995. Minimum Number of K Consecutive Bit Flips
In an array
A
containing only 0s and 1s, a K
-bit flip consists of choosing a (contiguous) subarray of length K
and simultaneously changing every 0 in the subarray to 1, and every 1 in the subarray to 0.
Return the minimum number of
K
-bit flips required so that there is no 0 in the array. If it is not possible, return -1
.
Example 1:
Input: A = [0,1,0], K = 1 Output: 2 Explanation: Flip A[0], then flip A[2].
Example 2:
Input: A = [1,1,0], K = 2 Output: -1 Explanation: No matter how we flip subarrays of size 2, we can't make the array become [1,1,1].
Example 3:
Input: A = [0,0,0,1,0,1,1,0], K = 3 Output: 3 Explanation: Flip A[0],A[1],A[2]: A becomes [1,1,1,1,0,1,1,0] Flip A[4],A[5],A[6]: A becomes [1,1,1,1,1,0,0,0] Flip A[5],A[6],A[7]: A becomes [1,1,1,1,1,1,1,1]
Note:
1 <= A.length <= 30000
1 <= K <= A.length
By lee215.
// ref. lee215's solution int minKBitFlips(vector<int>& A, int K) { const int n = A.size(); vector<bool> IsFlipped(n, false); bool Flipped = false; int Ans = 0; // 00010110 K = 3 // => 11110110 Flipped = true // => 11111000 // => 11111111 // 01010110 K = 3 // => 10110110 Flipped = true // => 11000110 Flipped = false // => 11111110 Flipped = true for (int i = 0; i < n; ++i) { if (i >= K) Flipped ^= IsFlipped[i - K]; if ((bool)A[i] == Flipped) { if (i + K > n) return -1; IsFlipped[i] = true; Flipped = !Flipped; ++Ans; } } return Ans; }
No comments:
Post a Comment